Python环境下信号处理的若干例子(第一篇)

liftword5个月前 (01-10)技术文章48

基于python的小波分解信号降噪方法

算法程序使用小波多分辨分析对信号进行降噪,降噪算法流程大致如下:

(1)去趋势项(如直流电流),并将数据归一化到区[0, 1];

(2)进行多级小波分解;

(3)使用步骤 (2)中的细节系数 cD 确定合适的阈值,给出5种不同的方法确定阈值;

(4)将简单的软阈值或硬阈值方法应用于细节系数;

(5)重建信号。

阈值确定方法,更多的细节请查看相关论文,很多

1. universal

在这种情况下,阈值由公式 MAD x sqrt{2 x log(m)} 给出,其中 MAD 是中值绝对偏差,m 是信号的长度。

2. sqtwolog

和universal一样,只是不使用MAD。

3. energy

在这种情况下,阈值算法估计细节系数的能量,并使用它们来估计最佳阈值。

4. stein

此方法实现了 Stein 的无偏风险估计。

5. heurstein

这是 Stein 的无偏风险估计的启发式实现。

Python环境下基于最小最大凹面全变分一维信号降噪方法

算法程序执行基于最小最大凹面全变分一维信号降噪,附带参考文献,运行环境为Python环境。

Python环境下轴承振动信号(一维信号)的包络谱分析

算法程序运行环境为Python,执行一维信号的包络谱分析,以轴承振动信号为例。

Python环境下基于小波散射变换的信号处理及信号重建

算法程序基于Python环境,对一维信号进行小波散射变换及相应的重建

所需模块

kymatio==0.2.1
matplotlib==3.5.2
numpy==1.22.0
scipy==1.7.3
torch==1.11.0

Simple time series analysis based on wavelet scattering

0阶小波散射变换plot order 0 (which is the mean of the signal)

1阶小波散射变换plot order 1

STFT时频谱specgram

2阶小波散射变换plot order 2

Chirp信号

1阶小波散射变换plot order 1

2阶小波散射变换plot order 2

小波散射变换重建

Python环境下的信号处理(包络谱,低通、高通、带通滤波,初级特征提取,机器学习,短时傅里叶变换)及轴承故障诊断探索

算法程序运行环境为jupyter notebook,内容包括包络谱,低通、高通、带通滤波,初级特征提取,机器学习,短时傅里叶变换,瀑布图等

Python小波变换、分解和一些应用(心电信号识别和人类活动识别)

算法程序运行环境为Python,执行小波分解、连续小波变换等,并给出两个应用:基于小波和机器学习的心电信号识别和人类活动识别

基于Python的时频分析:Stockwell变换(原始S_transform和快速离散标准正交S_transform)

算法程序在Python环境下执行Stockwell变换(原始Stransform 和快速离散标准正交Stransform)

面包多代码

https://mbd.pub/o/GeBENHAGEN

相关文章

机器学习-逻辑回归分析(Python)

前言回归和分类方法是机器学习中经常用到的方法一、分类与回归1.1什么是分类和回归区分回归问题和分类问题:回归问题:输入变量和输出变量均为连续变量的问题;分类问题:输出变量为有限个离散变量的问题。因此分...

【Python时序数据系列】基于GRU模型时序数据二分类(案例+源码)

这是我的第371篇原创文章。一、引言前面我介绍了单变量时序预测和多变量时序预测,都是回归任务。相关链接:时序预测系列文章本文将介绍时序分类任务-基于GRU模型进行时序数据二分类。二、实现过程2.1 准...

第三课 python学习 集合

第三课 python学习 集合班级一有学生Bill,Mark,Mark班级二有学生Tom,Linda,Bill找出两个班级有同名的学生Bill知识点:求两个集合的交集。集合里存放的是基础数据类型,整型...

147.Python——图像预处理操作:缩放和裁剪

在人工智能计算机视觉任务中,经常需要对图像进行预处理操作,比如,在图像分类任务中,我们需要训练图像数据大小一般为:224*224,416*416等,但在实际给的图像数据大小并不是这样的大小,所以需要需...

Python 卷积神经网络 ResNet的基本编写方法

ResNet(Residual Network)是由微软亚洲研究院提出的深度卷积神经网络,它在2015年的ImageNet挑战赛上取得了第一名的好成绩。ResNet最大的特点是使用了残差学习,可以解决...

【Python时序预测系列】LSTM实现时序数据多输入单输出多步预测

这是我的第321篇原创文章。一、引言单站点多变量输入单变量输出多步预测问题----基于LSTM实现。多输入就是输入多个特征变量单输出就是预测出一个标签的结果多步就是利用过去N天预测未来M天的结果二、实...